Wednesday, 31 August 2016

Understanding the strength and correlates of immunisation programmes

Childhood vaccinations are vital for the protection of children against dreadful diseases such as measles, polio, and diphtheria. In addition to providing personal protection, vaccines can also suppress epidemic outbreaks if a sufficiently large proportion of the population has immunity status – this “herd immunity” is important for society as many individuals are unable to vaccinate for medical reasons. Over the past half a century, public health organisations have made concerted efforts to vaccinate every child worldwide. However, notwithstanding the substantial improvements to vaccine coverage rates across the globe over the past few decades, there are still millions of unvaccinated children worldwide. The majority of these children live in countries where large numbers of the populations live in deprived, rural regions with poor access to healthcare. However, a number of children are denied vaccines because of parental attitudes and beliefs (which are often influenced by the media, religious groups, or anti-vaccination groups) – such hesitancy has been responsible for recent outbreaks in developing (e.g. Nigeria, Pakistan, Afghanistan) and developed (e.g. USA, UK) countries alike. Monitoring vaccine coverage rates, summarising recent vaccination behaviours, and understanding the factors which drive vaccination behaviour are thus key to our understanding vaccine acceptance, and can allow immunisation programmes to be more effectively tailored.

To understand these pertinent issues, we used machine learning tools on publicly-available vaccination and socioeconomic data (which can be found here  and the World Health Organization’s websites). We used Gaussian process regression to forecast vaccine coverage rates and used the predictive distributions over forecasted coverage rates to introduce a quantitative marker summarising a country’s recent vaccination trends and variability:  this summary is termed the Vaccine Performance Index. Parameterisations of this index can then be used to identify countries which are likely (over next few years) to have vaccine coverage rates far from those required for herd immunity levels or that are displaying worrying declines in rates and to assess which countries will miss immunisation goals set by global public health bodies. We find that these poorly-performing countries were mostly located in South-East Asia and sub-Saharan Africa though, surprisingly, a handful of European countries also perform poorly.

To investigate the factors associated with vaccination coverage, we sought links between socioeconomic factors with vaccine coverage and found that countries with higher levels of births attended by skilled health staff, gross domestic product, government health spending, and higher education levels have higher vaccination coverage levels (though these results are region-dependent).

Our vaccine performance index could aid policy makers’ assessments of the strength and resilience of immunisation programmes. Further,  identification of socioeconomic correlates of vaccine coverage points to factors to address to improve vaccination coverage. You can read further in our freely available paper – which is in collaboration with the London School of Hygiene and Tropical Medicine (Heidi Larson and David Smith) and IIT Delhi (Sumeet Agarwal) – in the open-access journal Lancet Global Health under the title “Forecasted trends in vaccination coverage and correlations with socioeconomic factors: a global time-series analysis over 30 years” and there is another free article unpacking it under the title "Global Trends in Vaccination Coverage". Alex, Iain, Nick.

No comments:

Post a Comment